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This	is	a	short	response	I	wrote	to	a	question	on	/r/javascript.	The	user	who	asked	it	was	curious	whether	there	would	be	any	performance	difference	between	adding	elements	to	a	JavaScript	array	by	calling	push,	or	manually	adding	a	new	object	to	an	array	by	making	a	call	like	myArray[myArray.length]	=	obj.	Let’s	take	a	look	at	the	ECMAScript
specification	to	see	what	it	says.			In	the	case	of	Array.prototype.push,	the	JS	runtime	must	first	call	toObject	on	the	argument	passed	to	push.	It	must	also	do	a	bit	of	work	to	handle	the	case	where	more	than	one	item	was	passed	to	push,	since	you	are	allowed	to	make	a	call	like	this:	abc.push(1,2,3).	After	from	calling	toObject	and	checking	how	many
arguments	were	provided,	it	then	goes	through	each	one	and	does	a	regular	property	set	call,	which	ends	doing	the	same	as	myArray[myArray.length]	=	obj.	If	you’re	only	adding	one	thing	to	your	array,	you	may	as	well	call	push,	since	it	is	easier	to	read	and	the	toObject	call	and	args	length	check	is	going	to	make	an	immeasurably	small	difference	to
execution	time.	If	you’re	adding	multiple	things	to	your	array,	then	call	myArray.push(...things).	because	when	you	do	that,	the	JS	engine’s	compiled	C++	will	handle	all	of	the	iteration,	instead	of	thunking	back	and	forth	between	native	code	and	JavaScript	if	you’re	looping	through	yourself	and	calling	push	every	time.	In	reality,	with	all	of	the
optimization	and	JITing	that	modern	JS	engines	do,	looping	through	yourself	probably	isn’t	all	that	much	slower	than	passing	everything	to	pushat	once.	I	haven’t	tested	this	to	verify,	though.	Related	Latest	run	results:	Run	details:	(Test	run	date:	2	months	ago)	User	agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10.15;	rv:100.0)	Gecko/20100101
Firefox/100.0	Browser/OS:	Firefox	100	on	Mac	OS	X	10.15	View	result	in	a	separate	tab	Test	name	Executions	per	second	Concat	2297.0	Ops/sec	Push	25841460.0	Ops/sec	Spread	syntax	0.3	Ops/sec	Because	the	.push()	is	a	function	call	and	the	other	is	direct	assignment.	Direct	assignment	is	always	faster.	Remember	that	in	javascript,	arrays	are
objects	like	everything	else.	This	means	you	can	assign	properties	directly	to	them.	In	the	special	case	of	arrays,	they	have	a	built-in	length	property	that	gets	update	behind	the	scenes	(and	lots	of	other	optimizations	under	the	hood,	but	that's	not	important	right	now).	In	a	regular	object,	you	can	do	this	but	its	not	an	array:	var	x	=	{	0:	'a',	1:	'b',	2:	'c'
};	However,	since	arrays	and	hashes	are	both	objects,	this	is	equivalent.	var	x	=	[	'a',	'b',	'c'	];	Since	x	is	an	array	in	the	second	case,	length	is	automatically	calculated	and	available.	to	understand	this,	there	needs	to	be	some	knowledge	about	how	a	Stack	(in	JavaScript,	an	Array)	is	designed	in	computer	science	and	is	represented	within	your
RAM/memory.	If	you	create	a	Stack(an	Array),	essentially	you	are	telling	the	system	to	allocate	a	space	in	memory	for	a	stack	that	eventually	can	grow.	Now,	everytime	you	add	to	that	Stack	(with	push),	it	adds	to	the	end	of	that	stack.	Eventually	the	system	sees	that	the	Stack	isn't	going	to	be	big	enough,	so	it	allocates	a	new	space	in	memory	at
oldstack.length*1.5-1	and	copies	the	old	information	to	the	new	space.	This	is	the	reason	for	the	jumps/jitters	in	your	graph	for	push	that	otherwise	look	flat/linear.	This	behavior	is	also	the	reason	why	you	always	should	initialize	an	Array/Stack	with	a	predefined	size	(if	you	know	it)	with	var	a=new	Array(1000)	so	that	the	system	doesn't	need	to
"newly	allocate	memory	and	copy	over".	Considering	unshift,	it	seems	very	similar	to	push.	It	just	adds	it	to	the	start	of	the	list,	right?	But	as	dismissive	this	difference	seems,	its	very	big!	As	explained	with	push,	eventually	there	is	a	"allocate	memory	and	copy	over"	when	size	runs	out.	With	unshift,	it	wants	to	add	something	to	the	start.	But	there	is
already	something	there.	So	it	would	have	to	move	the	element	at	position	N	to	position	N+1,	N1	to	N1+1,	N2	to	N2+1	etc.	Because	that	is	very	inefficient,	it	actually	just	newly	allocates	memory,	adds	the	new	Element	and	then	copies	over	the	oldstack	to	the	newstack.	This	is	the	reason	your	graph	has	more	an	quadratic	or	even	a	slight	exponential
look	to	it.	To	conclude;	push	adds	to	the	end	and	rarely	needs	reallocate	memory+copy	over.	unshift	adds	to	the	start	and	always	needs	to	reallocate	memory	and	copy	data	over	/edit:	regarding	your	questions	why	this	isn't	solved	with	a	"moving	index"	is	the	problem	when	you	use	unshift	and	push	interchangeably,	you	would	need	multiple	"moving
indexes"	and	intensive	computing	to	figure	out	where	that	element	at	index	2	actually	resides	in	memory.	But	the	idea	behind	a	Stack	is	to	have	O(1)	complexity.	There	are	many	other	datastructures	that	have	such	properties	(and	more	features)	but	at	a	tradeoff	for	speed,	memory	usage,	etc.	Some	of	these	datastructures	are	Vector,	a	Double-Linked-
List,	SkipList	or	even	a	Binary	Search	Tree	depending	on	your	requirements	Here	is	a	good	resource	explaining	datastructures	and	some	differences/advancements	between	them	const	MAX_BLOCK_SIZE	=	65535;	export	function	appendArrayInPlace(dest:	T[],	source:	T[])	{	let	offset	=	0;	let	itemsLeft	=	source.length;	if	(itemsLeft	0)	{	const
pushCount	=	Math.min(MAX_BLOCK_SIZE,	itemsLeft);	const	subSource	=	source.slice(offset,	offset	+	pushCount);	dest.push.apply(dest,	subSource);	itemsLeft	-=	pushCount;	offset	+=	pushCount;	}	}	return	dest;}	If	you	are	merging	arrays	with	thousands	of	elements	across,	you	can	shave	off	seconds	from	the	process	by	using	arr1.push(...arr2)
instead	of	arr1	=	arr1.concat(arr2).	If	you	really	to	go	faster,	you	might	even	want	to	write	your	own	implementation	to	merge	arrays.	Wait	a	minute...	how	long	does	it	take	to	merge	15,000	arrays	with	.concat...	Recently,	we	had	a	user	complaining	of	a	major	slowdown	in	the	execution	of	their	UI	tests	on	UI-licious.	Each	I.click	I.fill	I.see	command
which	usually	takes	~1	second	to	complete	(post-processing	e.g.	taking	screenshots)	now	took	over	40	seconds	to	complete	,	so	test	suites	that	usually	completed	under	20	minutes	took	hours	instead	and	was	severely	limiting	their	deployment	process.	It	didn't	take	long	for	me	to	set	up	timers	to	narrow	down	out	which	part	of	the	code	was	causing
the	slowdown,	but	I	was	pretty	surprised	when	I	found	the	culprit:	Array's	.concat	method.	In	order	to	allow	tests	to	be	written	using	simple	commands	like	I.click("Login")	instead	of	CSS	or	XPATH	selectors	I.click("#login-btn"),	UI-licious	works	using	dynamic	code	analysis	to	analyse	the	DOM	tree	to	determine	what	and	how	to	test	your	website
based	on	semantics,	accessibility	attributes,	and	popular	but	non-standard	patterns.	The	.concat	operations	was	being	used	to	flatten	the	DOM	tree	for	analysis,	but	worked	very	poorly	when	the	DOM	tree	was	very	large	and	very	deep,	which	happened	when	our	user	recently	pushed	an	update	to	their	application	that	caused	their	pages	to	bloat
significantly	(that's	another	performance	issue	on	their	side,	but	it's	another	topic).	It	took	6	seconds	to	merge	15,000	arrays	that	each	had	an	average	size	of	5	elements	with	.concat.	What?	6	seconds...	For	15,000	arrays	with	the	average	size	of	5	elements?	That's	not	a	lot	data.	Why	is	it	so	slow?	Are	there	faster	ways	to	merge	arrays?	Benchmark
comparisons	So	I	started	researching	(by	that,	I	mean	googling)	benchmarks	for	.concat	compared	to	other	methods	to	merge	arrays	in	Javascript.	It	turns	out	the	fastest	method	to	merge	arrays	is	to	use	.push	which	accepts	n	arguments:	//	Push	contents	of	arr2	to	arr1	arr1.push(arr2[0],	arr2[1],	arr2[3],	...,	arr2[n])	//	Since	my	arrays	are	not	fixed	in
size,	I	used	`apply`	instead	Array.prototype.push.apply(arr1,	arr2)	And	it	is	faster	by	leaps	in	comparison.	How	fast?	I	ran	a	few	performance	benchmarks	on	my	own	to	see	for	myself.	Lo	and	behold,	here's	the	difference	on	Chrome:		Link	to	the	test	on	JsPerf	To	merge	arrays	of	size	10	for	10,000	times,	.concat	performs	at	0.40	ops/sec,	while	.push
performs	at	378	ops/sec.	push	is	945x	faster	than	concat!	This	difference	might	not	be	linear,	but	it	is	already	is	already	significant	at	this	small	scale.	And	on	Firefox,	here's	the	results:	Firefox's	SpiderMonkey	Javascript	engine	is	generally	slower	compared	to	Chrome's	V8	engine,	but	.push	still	comes	out	top,	at	2260x	faster.	This	one	change	to	our
code	fixed	the	entire	slowdown	problem.	.push	vs.	.concat	for	2	arrays	with	50,000	elements	each	But	ok,	what	if	you	are	not	merging	10,000	size-10	arrays,	but	2	giant	arrays	with	50000	elements	each	instead?	Here's	the	the	results	on	Chrome	along	with	results:		Link	to	the	test	on	JsPerf	.push	is	still	faster	than	.concat,	but	a	factor	of	9.	Not	as
dramatic	as	945x	slower,	but	still	dang	slow.	Prettier	syntax	with	rest	spread	If	you	find	Array.prototype.push.apply(arr1,	arr2)	verbose,	you	can	use	a	simple	variant	using	the	rest	spread	ES6	syntax:	The	performance	difference	between	Array.prototype.push.apply(arr1,	arr2)	and	arr1.push(...arr2)	is	negligable.	But	why	is	Array.concat	so	slow?	It	lot
of	it	has	to	do	with	the	Javascript	engine,	but	I	don't	know	the	exact	answer,	so	I	asked	my	buddy	@picocreator	,	the	co-creator	of	GPU.js,	as	he	had	spent	a	fair	bit	of	time	digging	around	the	V8	source	code	before.	@picocreator	's	also	lent	me	his	sweet	gaming	PC	which	he	used	to	benchmark	GPU.js	to	run	the	JsPerf	tests	because	my	MacBook	didn't
have	the	memory	to	even	perform	.concat	with	two	size-50000	arrays.	Apparently	the	answer	has	a	lot	to	do	with	the	fact	that	.concat	creates	a	new	array	while	.push	modifies	the	first	array.	The	additional	work	.concat	does	to	add	the	elements	from	the	first	array	to	the	returned	array	is	the	main	reason	for	the	slowdown.	Me:	"What?	Really?	That's
it?	But	by	that	much?	No	way!"	@picocreator	:	"Serious,	just	try	writing	some	naive	implementations	of	.concat	vs	.push	then!"	So	I	tried	writing	some	naive	implementations	of	.concat	and	.push.	Several	in	fact,	plus	a	comparison	with	lodash's	_.concat:		Link	to	the	test	on	JsPerf	Naive	implementation	1	Let's	talk	about	the	first	set	of	naive
implementation:	Naive	implementation	of	.concat	//	Create	result	array	var	arr3	=	[]	//	Add	Array	1	for(var	i	=	0;	i	<	arr1Length;	i++){	arr3[i]	=	arr1[i]	}	//	Add	Array	2	for(var	i	=	0;	i	<	arr2Length;	i++){	arr3[arr1Length	+	i]	=	arr2[i]	}	Naive	implementation	of	.push	for(var	i	=	0;	i	<	arr2Length;	i++){	arr1[arr1Length	+	i]	=	arr2[i]	}	As	you	can	see,
the	only	difference	between	the	two	is	that	the	.push	implementation	modifies	the	first	array	directly.	Results	of	vanilla	methods:	.concat	:	75	ops/sec	.push:	793	ops/sec	(10x	faster)	Results	of	naive	implementation	1	.concat	:	536	ops/sec	.push	:	11,104	ops/sec	(20x	faster)	It	turns	that	my	DIY	concat	and	push	is	faster	than	the	vanilla
implementations...	But	here	we	can	see	that	simply	creating	a	new	result	array	and	copying	the	content	of	the	first	array	over	slows	down	the	process	significantly.	Naive	implementation	2	(Preallocate	size	of	the	final	array)	We	can	further	improve	the	naive	implementations	by	preallocating	the	size	of	the	array	before	adding	the	elements,	and	this
makes	a	huge	difference.	Naive	implementation	of	.concat	with	pre-allocation	//	Create	result	array	with	preallocated	size	var	arr3	=	Array(arr1Length	+	arr2Length)	//	Add	Array	1	for(var	i	=	0;	i	<	arr1Length;	i++){	arr3[i]	=	arr1[i]	}	//	Add	Array	2	for(var	i	=	0;	i	<	arr2Length;	i++){	arr3[arr1Length	+	i]	=	arr2[i]	}	Naive	implementation	of	.push
with	pre-allocation	//	Pre	allocate	size	arr1.length	=	arr1Length	+	arr2Length	//	Add	arr2	items	to	arr1	for(var	i	=	0;	i	<	arr2Length;	i++){	arr1[arr1Length	+	i]	=	arr2[i]	}	Results	of	naive	implementation	1	.concat	:	536	ops/sec	.push	:	11,104	ops/sec	(20x	faster)	Results	of	naive	implementation	2	.concat	:	1,578	ops/sec	.push	:	18,996	ops/sec	(12x
faster)	Preallocating	the	size	of	the	final	array	improves	the	performance	by	2-3	times	for	each	method.	.push	array	vs.	.push	elements	individually	Ok,	what	if	we	just	.push	elements	individually?	Is	that	faster	than	Array.prototype.push.apply(arr1,	arr2)	for(var	i	=	0;	i	<	arr2Length;	i++){	arr1.push(arr2[i])	}	Results	.push	entire	array:	793	ops/sec
.push	elements	individually:	735	ops/sec	(slower)	So	doing	.push	on	individual	elements	is	slower	than	doing	.push	on	the	entire	array.	Makes	sense.	Conclusion:	Why	.push	is	faster	.concat	In	conclusion,	it	is	true	that	the	main	reason	why	concat	is	so	much	slower	than	.push	is	simply	that	it	creates	a	new	array	and	does	the	additional	work	to	copy	the
first	array	over.	That	said,	now	there's	another	mystery	to	me...	Another	mystery	Why	are	the	vanilla	implementations	so	much	slower	than	the	naive	implementations?I	asked	for	@picocreator	's	help	again.	We	took	a	look	at	lodash's	_.concat	implementation	for	some	hints	as	to	what	else	is	vanilla	.concat	doing	under	the	hood,	as	it	is	comparable	in
performance	(lodash's	is	slightly	faster).	It	turns	out	that	because	according	to	the	vanilla's	.concat's	specs,	the	method	is	overloaded,	and	supports	two	signatures:	Values	to	append	as	n	number	of	arguments,	e.g.	[1,2].concat(3,4,5)	The	array	to	append	itself,	e.g.	[1,2].concat([3,4,5])	You	can	even	do	both	like	this:	[1,2].concat(3,4,[5,6])	Lodash	also
handles	both	overloaded	signatures,	and	to	do	so,	lodash	puts	all	the	arguments	into	an	array,	and	flattens	it.	It	make	sense	if	you	are	passing	in	several	arrays	as	arguments.	But	when	passed	an	array	to	append,	it	doesn't	just	use	the	array	as	it	is,	it	copies	that	into	another	array,	and	then	flattens	it.	...	ok...	Definitely	could	be	more	optimised.	And
this	is	why	you	might	want	to	DIY	your	own	merge	array	implementation.	Also,	it's	just	my	and	@picocreator	's	theory	of	how	vanilla	.concat	works	under	the	hood	based	on	Lodash's	source	code	and	his	slightly	outdated	knowledge	of	the	V8	source	code.	You	can	read	the	lodash's	source	code	at	your	leisure	here.	Additional	Notes	The	tests	are	done
with	Arrays	that	only	contain	Integers.	Javascript	engines	are	known	to	perform	faster	with	Typed	Arrays.	The	results	are	expected	to	be	slower	if	you	have	objects	in	the	arrays.	Here	are	the	specs	for	the	PC	used	to	run	the	benchmarks:	Why	are	we	doing	such	large	array	operations	during	UI-licious	tests	anyway?	Under	the	hood,	the	UI-licious	test
engine	scans	the	DOM	tree	of	the	target	application,	evaluating	the	semantics,	accessible	attributes	and	other	common	patterns	to	determine	what	is	the	target	element	and	how	to	test	it.	This	is	so	that	we	can	make	sure	tests	can	be	written	as	simple	as	this:	//	Lets	go	to	dev.to	I.goTo("	")	//	Fill	up	search	I.fill("Search",	"uilicious")	I.pressEnter()	//	I
should	see	myself	or	my	co-founder	I.see("Shi	Ling")	I.see("Eugene	Cheah")	Without	the	use	of	CSS	or	XPATH	selectors,	so	that	the	tests	can	be	more	readable,	less	sensitive	to	changes	in	the	UI,	and	easier	to	maintain.	ATTENTION:	Public	service	announcement	-	Please	keep	your	DOM	count	low!	Unfortunately,	there's	a	trend	of	DOM	trees	growing
excessively	large	these	days	because	people	are	building	more	and	more	complex	and	dynamic	applications	with	modern	front-end	frameworks.	It's	a	double-edge	sword,	frameworks	allow	us	to	develop	faster,	folks	often	forget	how	much	bloat	frameworks	add.	I	sometimes	cringe	at	the	number	of	elements	that	are	just	there	to	wrap	other	elements
when	inspecting	the	source	code	of	various	websites.	If	you	want	to	find	out	whether	your	website	has	too	many	DOM	nodes,	you	can	run	a	Lighthouse	audit.	According	to	Google,	the	optimal	DOM	tree	is:	Less	than	1500	nodes	Depth	size	of	less	than	32	levels	A	parent	node	has	less	than	60	children	A	quick	audit	on	the	Dev.to	feed	shows	that	the
DOM	tree	size	is	pretty	good:	Total	count	of	941	nodes	Max.	depth	of	14	Max	number	of	child	elements	at	49	Not	bad!
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